On the Weak Lefschetz Property for Powers of Linear Forms

نویسندگان

  • JUAN MIGLIORE
  • ROSA M. MIRÓ-ROIG
  • UWE NAGEL
چکیده

Ideals generated by prescribed powers of linear forms have attracted a great deal of attention recently. In this paper we study properties that hold when the linear forms are general, in a sense that we make precise. Analogously, one could study so-called “general forms” of the same prescribed degrees. One goal of this paper is to highlight how the differences between these two settings are related to the Weak Lefschetz Property (WLP) and the Strong Lefschetz Property (SLP). Our main focus is the case of powers of r+1 general linear forms in r variables. For four variables, our results allow the exponents to all be different, and we determine when the WLP holds and when it does not in a broad range of cases. For five variables we solve this problem in the case where all the exponents are equal (so-called uniform powers), and in the case where one is allowed to be greater. For evenly many variables (≥ 6) we solve the case of uniform powers, and in particular we prove half of a recent conjecture by Harbourne, Schenck and Seceleanu, by showing that for evenly many variables, an ideal generated by d-th powers of r+1 general linear forms fails the WLP if and only if d > 1. For uniform powers of an odd number of variables, we also give a result for seven variables, missing only the case d = 3. Our approach in this paper is via the connection (thanks to Macaulay duality) to fat point ideals, together with a reduction to a smaller projective space, and the use of Cremona transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property

In [19], Migliore–Miró-Roig–Nagel show that the Weak Lefschetz property can fail for an ideal I ⊆ K[x 1 ,. .. , x 4 ] generated by powers of linear forms. This is in contrast to the analogous situation in K[x 1 , x 2 , x 3 ], where WLP always holds [24]. We use the inverse system dictionary to connect I to an ideal of fat points, and show that failure of WLP for powers of linear forms is connec...

متن کامل

The Weak Lefschetz Property, Inverse Systems and Fat Points

In [13], Migliore–Miró-Roig–Nagel show that the Weak Lefschetz property can fail for an ideal I ⊆ K[x1, . . . , x4] generated by powers of linear forms. This is in contrast to the analogous situation in K[x1, x2, x3], where WLP always holds [16]. We use the inverse system dictionary to connect I to an ideal of fat points, and show that failure of WLP for powers of linear forms is connected to t...

متن کامل

The central simple modules of Artinian Gorenstein algebras

Let A be a standard graded Artinian K-algebra, with char K = 0. We prove the following. 1. A has the Weak Lefschetz Property (resp. Strong Lefschetz Property) if and only if Gr(z)(A) has the Weak Lefschetz Property (resp. Strong Lefschetz Property) for some linear form z of A. 2. If A is Gorenstein, then A has the Strong Lefschetz Property if and only if there exists a linear form z of A such t...

متن کامل

Ideals of General Forms and the Ubiquity of the Weak Lefschetz Property

Let d1, . . . , dr be positive integers and let I = (F1, . . . , Fr) be an ideal generated by forms of degrees d1, . . . , dr, respectively, in a polynomial ring R with n variables. With no further information virtually nothing can be said about I, even if we add the assumption that R/I is Artinian. Our first object of study is the case where the Fi are chosen generally, subject only to the deg...

متن کامل

Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach

We consider the vector space of globally differentiable piecewise polynomial functions defined on a three-dimensional polyhedral domain partitioned into tetrahedra. We prove new lower and upper bounds on the dimension of this space by applying homological techniques. We give an insight of different ways of approaching this problem by exploring its connections with the Hilbert series of ideals g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011